

Total Time: 25 minutes

<u>Total Marks:</u> 19 marks

Specialist Mathematics Units 3&4

Topic Test 2 (Wed, May 11th)

Resource Free

ClassPad Calculators are <u>NOT</u> permitted. Miscellaneous Formulae Sheet is permitted.

Name:

1. [1 & 2 = 3 marks]

Points A, B and C are such that $\overrightarrow{AB} = 2i + j - k$ and $\overrightarrow{AC} = -i + 2j + 2k$.

- (a) Find a vector that is perpendicular to vectors \overrightarrow{AB} and \overrightarrow{AC} .
- (b) Point A has position vector $3\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
 - (i) Find the vector equation of the plane that contains points A, B and C.
 - (ii) Find the position vector of point B.

2. [1, 1, 1, 1 & 2 = 6 marks]

Consider the two points, *A* and B, with position vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$.

(a) Find 2a + b

- (b) Find the magnitude of \underline{a} .
- (c) Vector \mathbf{f} is in the direction of \mathbf{a} and has magnitude of 5. Find vector \mathbf{f} .

- (d) Find the vector \overrightarrow{AB} .
- (e) Find the position vector of the point *P* that divides *AB* internally in the ratio of 2:3. i.e. AP:PB = 2:3.

3. [4 marks]

Find the exact shortest distance between the line with vector equation $\mathbf{r}(\lambda) = \begin{pmatrix} \lambda \\ 3+2\lambda \end{pmatrix}$ and the point A with position vector $\mathbf{i} + 10\mathbf{j}$.

4. [1, 2 & 3 = 6 marks]

Two particles are moving on paths described by the vector equations $\mathbf{r}_{A} = (3t-1)\mathbf{i} + 5t\mathbf{j}$ and $\mathbf{r}_{B} = (2t+5)\mathbf{i} + (t^{2}-6)\mathbf{j}$ respectively.

(a) Find the Cartesian equation of the path of particle B.

(b) Use vector methods to find the exact distance between the two particles when t = 4.

(c) Use vector methods to prove that the particles collide and find the time and position vector of the point of collision.

Total Time: 25 minutes

Total Marks: 21 marks

Specialist Mathematics Units 3&4

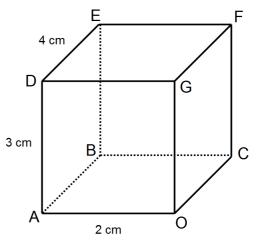
Topic Test 2 (Wed, May 11th)

Miscellaneous Formulae Sheet, half an A4 size page of notes and ClassPad Calculators are permitted.

Name:	
name.	

In this section of the test, you should use your ClassPad calculator. You must show appropriate mathematics so that your method is clear. Do not write ClassPad instructions in your method. Write only appropriate mathematical notation.

5. [2 marks]


Points A and B have position vectors 4i - 5j - 2k and 8i - 5j + 6k respectively relative to an origin O.

Use vector methods to find the area of $\triangle AOB$.

6. [2, 2 & 2 = 6 marks]

The rectangular prism to the right has base OABC and top of GDEF with G, D, E and F above O, A, B and C respectively.

DE = 4 cm, DA = 3 cm and AO = 2 cm and let the origin be point O.

The coordinates of G relative to the origin are (0, 0, 3)

(a) State the position vector of point

(i) D (ii) P, the midpoint of BC

(b) Find a vector equation of the line through points P and D.

(c) Use vector methods to find the angle the line through P and D makes with the base OABC.

7. [1 & 3 = 4 marks]

At 10 am, particle B leaves point P, position vector $2\mathbf{i} + 5\mathbf{j}$ metres relative to origin O, with velocity $-\mathbf{i} + 5\mathbf{j}$ m/s.

(a) Find the position of B relative to the origin after 5 seconds.

(b) Find the amount of time after 10 am that it takes for B to first be 10 metres from the point Q which has position vector $3\underline{i} + 46\underline{j}$.

8. [1 & 3 = 4 marks]

(a) Find the angle between the planes $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = 10$ and x + 3y - 2z = 16.

(b) Find, in scalar product form, the vector equation of the plane $\mathbf{r} = (1+3\lambda+2\mu)\mathbf{i} + (1+\lambda+4\mu)\mathbf{j} - \mu\mathbf{k}$.

9. [2 marks]

The points A(4,-2,3), B(-1,3,4), C(2,4,-2) and D(7,-1,-3) form quadrilateral ABCD. Use vector methods to prove that ABCD is a parallelogram.

10. [3 marks]

The position vectors of three non-collinear points A, B and C, with respect to an origin O, are \mathbf{a} , \mathbf{b} and \mathbf{c} respectively.

Given that O does not lie in the plane ABC, show that $\alpha + \beta + \gamma = 1$ if the point Q with position vector $\mathbf{q} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$ lies in the plane ABC.